Modern high pulse height resolution fast neutron spectrometer

Dzhonrid Abdurashitov

Institute for Nuclear Research Russian Academy of Sciences Moscow, Russia

For the INR-NIST collaboration

HEND Workshop, ISR, Moscow June 3, 2010

Neutron spectrometry methods

+ Capture Gated (with ⁶Li, ¹⁰B,...)

- Recoil nuclei techniques (H or He proportional counter, organic and nonorganic scintillator, etc.)
- Charged products of n-induced reactions (28Si(n,a)25Mg_{qs} at silicon semiconductor)
- Threshold reactions (neutron activation techniques)
- Time-of-flight measurement
- Bonner spheres (thermal neutron detector inside spherical moderator)

Most of them do not produce an adequate Pulse Height distribution requiring thus a response function to unfold

Capture gated recoil spectrometers

Plastics or liquid doped with B or Li

"Capture gated" means that only those neutrons which deposited all initial energy in the detector are used for the spectrometry

Response function of capture gated spectrometer

Specific features

- •Double peak
- Dynamics

What is a reason?

Assume $E_n = 3 \text{ MeV}$

1 Recoil (3 MeV):

1 MeV escale
2 Recoils (1+2 MeV):

0.2 + 0.6 = 0.8 MeV escale

3 Recoils (1+1+1 MeV): 0.2 + 0.2 + 0.2 = 0.6 MeV escale

Energy, MeV electron scale

Response function of capture gated spectrometer

Summary

Double peak is from multiplicity of recoil protons combining with nonlinear light yielding obviously

How to obtain high Pulse Height Resolution?

• If neutron is captured,

$$E_n \approx \sum E_{pi}$$

• Due to non-linear light yield,

$$\sum I(E_{pi}) \neq I(\sum E_{pi})$$

• If one detects recoils separately and light yield function is known,

$$E_n \approx \sum E_p(I_i)$$

Main idea: ISOLATED SEGMENTS!

Nonlinearity of light-yield of scintillator for recoil protons (NE-213)

The high pulse height resolution fast neutron detector: crucial points

- The ratio H/C as high as possible (~1.1 for plastics, 1.5-1.8 for liquids)
- 1 recoil proton in each section (>90%)
- Light yield as much as possible (1000-5000 photons/MeV)
- Light collection as uniform as possible (<10%) internal reflection
- $^{6}\text{Li}(n,\alpha)^{3}\text{H}+4.8 \text{ MeV}$ the highest energy for massive products
- Pulse shape discrimination
- Fast triggering (≥2 coincident sections in less than 50 ns)

Characteristics of the pilot version

• Type of the detector: segmented capture gated

• Detector volume: ≈1.2 l of liquid

• Total number of segments: 16

• Total number of PMT: 32

• Energy range: 3 - 30 MeV

• Energy resolution ($E_n=14 \text{ MeV}$): 20-25%

• Detector efficiency ($E_n=3 \text{ MeV}$): 0.2-0.5%

• Total dimensions: 550×430×340 mm³

• Total mass of the detector: 34.7 kg

The detector – external view

The detector – internal view

The detector inside

Design of segment

DAQ system. Quasi-capture mode

Sources and shielding

- 1. 40 K γ -source, 1.46 MeV (C.E. 1.24 MeV), intensity $\sim 10^3$ s⁻¹, distance=10 cm
- 2. $Pu-\alpha-Be-n+\gamma$, $E_{\gamma}=4.44$ MeV (C.E. 4.2 MeV), intensity ~10⁷ s⁻¹, yield 0.6, d=80 cm,
- 3. D-T neutrons, E=14.1 MeV, intensity $\sim 10^3$ s⁻¹, distance 20 cm,
- 4. Shield 3 cm W, linear attenuation on 4 MeV gamma 0.05

Trigger: >0 hit segments, electron scale

Calibration: Compton edge 40 K 1.24 MeV – 700 chn QDC = 1.8 keV/chn

Threshold: [50 chn QDC] = [90 keV, electron scale] = [630 keV, proton scale]

Compton edge of 4.44 MeV located at 4.2 MeV – in good agreement with ⁴⁰K calibration The edge of recoil pulse height spectrum is ~5 MeV ee, or ~10 MeV proton scale

Trigger: >2 hit segments, electron scale

Segment threshold: [90 keV, electron scale] = [630 keV, neutron scale]

Threshold of sum pulse height spectrum: 270 keV, electron scale

Effective threshold, neutron scale: ~3.0 MeV

Trigger: >2 hit segments, neutron scale

Restore technique: measure individual flashes – calculate individual recoil energies – obtain neutron energy as a sum of recoils

Smooth: Gaussian with FWHM=20% at 8 MeV

Effective threshold, neutron scale: ~3.0 MeV

Multiplicity distribution: neutrons (b) & bkg (k)

Step response of the detector on 14.1 MeV neutrons

14.1 MeV neutrons energy distribution on cosmic muons background (neutron energy scale)

SUMMARY

- The principle of separate recoils detection is demonstrated
- If applied fast neutron spectrometry online
- Wide field to improve (PSD, capture gating)
- Pulse height resolution ~15-20% at 14 MeV is expected
- Efficiency 0.1-1% in 1-20 MeV